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Some History and Motivation Stalnaker’s Logic KB Our Work Future Work

Background Notions

A topological space is a pair (X , τ) where X is a non-empty set
and τ ⊆ P(X ) such that
• X , ∅ ∈ τ
• τ is closed under finite intersection and arbitrary union.

Elements of τ are called open sets.

Complements of opens are called closed sets.

An open set containing x ∈ X is called open neighborhood of x .
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Background Notions

• Interior operator:

Int : P(X ) → P(X )

Int(A) 7→ the largest open set contained in A

• Closure operator:

Cl : P(X ) → P(X )

Cl(A) 7→ the least closed set containing A

• Cl(A) = X \ Int(X \ A)
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Example:

Consider the real line and the topology of open intervals and
their countable unions on R.
Let A = [0,1)

0 1

[0,1)
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Topological Semantics for Knowledge

(LK ) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ
A topological model is a tupleM = (X , τ, ν) where X and τ as
before and ν : Prop→ P(X ) is valuation function.

x ∈ [[Kϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U ⊆ [[ϕ]]M)

i.e.,
[[Kϕ]] = Int([[ϕ]])

[[〈K 〉ϕ]] = Cl([[ϕ]]) (〈K 〉ϕ := ¬K¬ϕ)

We can think of
• open sets U ∈ τ as pieces of evidence, and
• open neighborhoods of the actual world as pieces of

truthful evidence.
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Moreover, ...
Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological
spaces.

Hence, topologically,
knowledge is truthful

Kϕ→ ϕ,

positively introspective

Kϕ→ KKϕ,

but not necessarily negatively introspective

¬Kϕ→ K¬Kϕ.
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Belief via Topology

Steinsvold (2006) proposes a topological semantics for belief in
terms of the dual of the derived set operator:

x ∈ [[Bϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U \ {x} ⊆ [[ϕ]]M)

x ∈ [[Kϕ]]M iff ∃U ∈ τ(x ∈ U ∧ U ⊆ [[ϕ]]M)

Downsides:
1 it entails the necessity of error :

there is at least one false belief in all worlds of every
topological model.

2 it can easily be “Gettierized” :

Kϕ := Bϕ ∧ ϕ
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Our Focus

Given the interior-based topological semantics for knowledge:

1 how can we construct a topological semantics for belief
which can also address the problem of understanding the
relation between knowledge and belief?

2 how to extend this setting to static and dynamic belief
revision?
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Stalnaker’s Logic KB
(LKB) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ

Epistemic-Doxastic Axioms
K (ϕ→ ψ)→ (Kϕ→ Kψ) Knowledge is additive

Kϕ→ ϕ Knowledge implies truth
Kϕ→ KKϕ Positive introspection for K
Bϕ→ ¬B¬ϕ Consistency of belief
Bϕ→ KBϕ (Strong) positive introspection of B
¬Bϕ→ K¬Bϕ (Strong) negative introspection of B

Kϕ→ Bϕ Knowledge implies Belief
Bϕ→ BKϕ Full Belief

Inference Rules
From ϕ and ϕ→ ψ infer ψ. Modus Ponens

From ϕ infer Kϕ. Necessitation
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• Belief as subjective certainty : an agent “fully” believes ϕ iff
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Stalnaker’s logic entails:

1 (Full) belief can be defined in terms of knowledge as

Bϕ↔ 〈K 〉Kϕ

2 KD45 as the logic of belief
3 S4.2 as the logic of knowledge
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Theorem (Folklore)

S4.2 is sound and complete wrt the class of extremally
disconnected spaces (under the interior semantics).

A space (X , τ) is called extremally disconnected if the closure
of each open subset of X is open.
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Topological Semantics for Full Belief

Our Proposal: Topological semantics for full belief

RECALL: `KB Bϕ↔ 〈K 〉Kϕ

Given an extremally disconnected space (X , τ), we interpret
belief as the closure of the interior operator :

[[Bϕ]] = Cl(Int([[ϕ]]))
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Topological Semantics for Full Belief

The Most General Extensional Semantics for KB

• An extensional semantics for LKB: (X ,K,B)
• K : P(X )→ P(X )
• B : P(X )→ P(X )

• An extensional model: (X ,K,B, ν)

[[Kϕ]]M = K[[ϕ]]M

[[Bϕ]]M = B[[ϕ]]M.

• A topological extensional semantics for LKB:
(X ,Kτ ,Bτ ) := (X , Int,Cl(Int))
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Topological Semantics for Full Belief

The Most General Extensional Semantics for KB

Theorem (Topological Representation Theorem)

An extensional semantics (X ,K,B) validates all the axioms and
rules of Stalnaker’s system KB iff it is a topological extensional
semantics given by an extremally disconnected topology τ on
X.
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Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

Axioms of S4.2
K (ϕ→ ψ)→ (Kϕ→ Kψ)

Kϕ→ ϕ
Kϕ→ KKϕ

〈K 〉Kϕ→ K 〈K 〉ϕ

Axioms of KD45
B(ϕ→ ψ)→ (Bϕ→ Bψ)

Bϕ→ 〈B〉ϕ
Bϕ→ BBϕ
〈B〉ϕ→ B〈B〉ϕ

• Known: S4.2 is sound and complete wrt the class of
extremally disconnected spaces.
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Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

(LB) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕ

Theorem
KD45 is sound and complete wrt the class of extremally
disconnected spaces.
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Static Belief Revision: Conditional Beliefs

Conditional Beliefs

(LKCB) ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | Bψϕ

• Bψϕ := If the agent would learn ψ she would come to
believe that ϕ was the case before the learning.
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Static Belief Revision: Conditional Beliefs

• For any topological modelM = (X , τ, ν) based on an
extremally disconnected space (X , τ),

[[Bϕ]]M = Cl(Int([[ϕ]]M)) = Int(Cl(Int([[ϕ]]M))).

• The Basic Topological Semantics for CB:

[[Bϕψ]] = Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M)).

• The Refined Topological Semantics for CB:

[[Bϕψ]] = Int([[ϕ]]M → Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M))).
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Dynamic Belief Revision: Updates

Updates

Given a topological space (X , τ) and a set P ⊆ X , a space
(P, τP) is called a subspace of (X , τ) where
τP = {U ∩ P : U ∈ τ}.

P

(X , τ)
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Dynamic Belief Revision: Updates

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | Bψ | 〈!ϕ〉ϕ

• 〈!ϕ〉ψ := ϕ is true and after the agent learns ϕ, ψ becomes
true.

M = (X , τ, ν)

〈!ϕ〉−−→

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

• [[ϕ]] = [[ϕ]]M

• τ[[ϕ]] = {U ∩ [[ϕ]] : U ∈ τ}
• ν[[ϕ]](p) = ν(p) ∩ [[ϕ]] for any p ∈ Prop
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Dynamic Belief Revision: Updates

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ | Bψ | 〈!ϕ〉ϕ

• 〈!ϕ〉ψ := ϕ is true and after the agent learns ϕ, ψ becomes
true.

M = (X , τ, ν)

〈!ϕ〉−−→

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]])

• Given a topological modelM = (X , τ, ν), the additional
semantic clause reads

x ∈ [[〈!ϕ〉ψ]]M iff x ∈ [[ϕ]] and x ∈ [[ψ]]Mϕ .
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Future Work

• Multi-agent case
• Action models
• Dynamic attitudes
• Relation with topo-logic and effort modality
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Thank you!
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