Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

LORIA, CNRS-Université de Lorraine

December 2, 2013

Joint work with Alexandru Baltag, Nick Bezhanishvili and Sonja Smets.

(日)

Aybüke Özgün

イロン イロン イヨン イヨン

Topological Models for (Full) Belief and Belief Revision

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

A *topological space* is a pair (X, τ) where X is a non-empty set and $\tau \subseteq \mathcal{P}(X)$ such that

- $X, \emptyset \in \tau$
- τ is closed under finite intersection and arbitrary union.

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

A *topological space* is a pair (X, τ) where X is a non-empty set and $\tau \subseteq \mathcal{P}(X)$ such that

• $X, \emptyset \in \tau$

• τ is closed under finite intersection and arbitrary union.

Elements of τ are called *open sets*.

A *topological space* is a pair (X, τ) where X is a non-empty set and $\tau \subseteq \mathcal{P}(X)$ such that

• $X, \emptyset \in \tau$

• τ is closed under finite intersection and arbitrary union. Elements of τ are called *open sets*.

Complements of opens are called *closed sets*.

< ロ > < 同 > < 臣 > < 臣 >

A *topological space* is a pair (X, τ) where X is a non-empty set and $\tau \subseteq \mathcal{P}(X)$ such that

• $X, \emptyset \in \tau$

• τ is closed under finite intersection and arbitrary union.

Elements of τ are called *open sets*.

Complements of opens are called *closed sets*.

An open set containing $x \in X$ is called *open neighborhood* of x.

• Interior operator:

 $\begin{array}{rcl} \mathrm{Int}:\mathcal{P}(X) & \to & \mathcal{P}(X) \\ & \mathrm{Int}(A) & \mapsto & \text{the largest open set contained in } A \end{array}$

イロン イボン イヨン イヨン

• Interior operator:

 $\begin{array}{rcl} \mathrm{Int}:\mathcal{P}(X) & \to & \mathcal{P}(X) \\ & \mathrm{Int}(A) & \mapsto & \mathrm{the} \ \mathrm{largest} \ \mathrm{open} \ \mathrm{set} \ \mathrm{contained} \ \mathrm{in} \ A \end{array}$

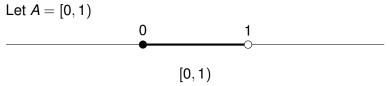
• Closure operator:

 $\begin{array}{rcl} \mathrm{Cl}: \mathcal{P}(X) & \to & \mathcal{P}(X) \\ & \mathrm{Cl}(A) & \mapsto & \text{the least closed set containing } A \end{array}$

• Interior operator:

 $\begin{array}{rcl} \mathrm{Int}:\mathcal{P}(X) & \to & \mathcal{P}(X) \\ & \mathrm{Int}(A) & \mapsto & \mathrm{the} \ \mathrm{largest} \ \mathrm{open} \ \mathrm{set} \ \mathrm{contained} \ \mathrm{in} \ A \end{array}$

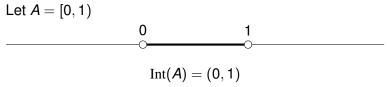
• Closure operator:


 $\begin{array}{rcl} \mathrm{Cl}: \mathcal{P}(X) & \to & \mathcal{P}(X) \\ & \mathrm{Cl}(A) & \mapsto & \text{the least closed set containing } A \end{array}$

•
$$\operatorname{Cl}(A) = X \setminus \operatorname{Int}(X \setminus A)$$

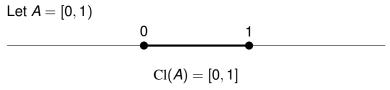
Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Example:


Consider the real line and the topology of open intervals and their countable unions on \mathbb{R} .

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Example:


Consider the real line and the topology of open intervals and their countable unions on \mathbb{R} .

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Example:

Consider the real line and the topology of open intervals and their countable unions on \mathbb{R} .

Stalnaker's Logic KB

Our Work 00000 00 0000 Future Work

Topological Semantics for Knowledge

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Topological Semantics for Knowledge

 $(\mathcal{L}_{\mathcal{K}}) \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

イロン イボン イヨン イヨン

Topological Semantics for Knowledge

$$(\mathcal{L}_{\mathcal{K}}) \ \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K} \varphi$$

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

Topological Semantics for Knowledge

$$(\mathcal{L}_{\mathcal{K}}) \ \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$$

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$x \in \llbracket K \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

Topological Semantics for Knowledge

$$(\mathcal{L}_{\mathcal{K}}) \ \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathcal{K}\varphi$$

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket oldsymbol{K} arphi
rbrace^{\mathcal{M}} ext{ iff } \exists oldsymbol{U} \in au(oldsymbol{x} \in oldsymbol{U} \ \land oldsymbol{U} \subseteq \llbracket arphi
rbrace^{\mathcal{M}})$$

i.e.,

$$\llbracket K \varphi \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket)$$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Topological Semantics for Knowledge

$$(\mathcal{L}_{\mathcal{K}}) \ \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K} \varphi$$

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket K arphi
brace ^{\mathcal{M}}$$
 iff $\exists U \in au (oldsymbol{x} \in oldsymbol{U} \land U \subseteq \llbracket arphi
brace ^{\mathcal{M}})$

i.e.,

$$\llbracket K\varphi \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket)$$
$$\llbracket \langle K \rangle \varphi \rrbracket = \operatorname{Cl}(\llbracket \varphi \rrbracket) \quad (\langle K \rangle \varphi := \neg K \neg \varphi)$$

Topological Semantics for Knowledge

$$(\mathcal{L}_{\mathcal{K}}) \ \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K} \varphi$$

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket {\mathcal K} arphi
brace {\mathbb J}^{\mathcal M}$$
 iff $\exists U \in au(oldsymbol{x} \in oldsymbol{U} \land U \subseteq \llbracket arphi
brace {\mathbb J}^{\mathcal M})$

i.e.,

$$\llbracket K \varphi \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket)$$
$$\llbracket \langle K \rangle \varphi \rrbracket = \operatorname{Cl}(\llbracket \varphi \rrbracket) \quad (\langle K \rangle \varphi := \neg K \neg \varphi)$$

We can think of

• open sets $U \in \tau$ as pieces of evidence, and

Topological Semantics for Knowledge

$$(\mathcal{L}_{\mathcal{K}}) \ \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{K} \varphi$$

A topological model is a tuple $\mathcal{M} = (X, \tau, \nu)$ where X and τ as before and ν : Prop $\rightarrow \mathcal{P}(X)$ is valuation function.

$$oldsymbol{x} \in \llbracket {\mathcal K} arphi
brace {\mathbb J}^{\mathcal M}$$
 iff $\exists U \in au(oldsymbol{x} \in oldsymbol{U} \land U \subseteq \llbracket arphi
brace {\mathbb J}^{\mathcal M})$

i.e.,

$$\llbracket K\varphi \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket)$$
$$\llbracket \langle K \rangle \varphi \rrbracket = \operatorname{Cl}(\llbracket \varphi \rrbracket) \quad (\langle K \rangle \varphi := \neg K \neg \varphi)$$

We can think of

- open sets $U \in \tau$ as pieces of evidence, and
- open neighborhoods of the actual world as pieces of truthful evidence.

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically,

イロン イボン イヨン

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically, knowledge is *truthful*

$$K\varphi \rightarrow \varphi,$$

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically, knowledge is *truthful*

$$K\varphi \to \varphi,$$

positively introspective

$$K\varphi \to KK\varphi,$$

Theorem (McKinsey and Tarski, 1944)

S4 is sound and complete wrt the class of all topological spaces.

Hence, topologically, knowledge is *truthful*

$$K\varphi \to \varphi,$$

positively introspective

$$K\varphi \to KK\varphi,$$

but not necessarily negatively introspective

$$\neg K\varphi \rightarrow K\neg K\varphi.$$

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

(日) (四) (三) (三)

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Steinsvold (2006) proposes a topological semantics for belief in terms of the dual of the derived set operator:

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Steinsvold (2006) proposes a topological semantics for belief in terms of the dual of the derived set operator:

 $x \in \llbracket B \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Steinsvold (2006) proposes a topological semantics for belief in terms of the dual of the derived set operator:

$$x \in \llbracket B \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

 $x \in \llbracket K \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Steinsvold (2006) proposes a topological semantics for belief in terms of the dual of the derived set operator:

$$x \in \llbracket B\varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \setminus \{x\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

 $x \in \llbracket K \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists U \in \tau (x \in U \land U \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

Downsides:

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Steinsvold (2006) proposes a topological semantics for belief in terms of the dual of the derived set operator:

$$\boldsymbol{x} \in \llbracket \boldsymbol{B} \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists \boldsymbol{U} \in \tau (\boldsymbol{x} \in \boldsymbol{U} \land \boldsymbol{U} \setminus \{\boldsymbol{x}\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

 $\boldsymbol{x} \in \llbracket \boldsymbol{K} \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists \boldsymbol{U} \in \tau (\boldsymbol{x} \in \boldsymbol{U} \land \boldsymbol{U} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

Downsides:

• it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.

Steinsvold (2006) proposes a topological semantics for belief in terms of the dual of the derived set operator:

$$\boldsymbol{x} \in \llbracket \boldsymbol{B} \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists \boldsymbol{U} \in \tau (\boldsymbol{x} \in \boldsymbol{U} \land \boldsymbol{U} \setminus \{\boldsymbol{x}\} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$$

 $\boldsymbol{x} \in \llbracket \boldsymbol{K} \varphi \rrbracket^{\mathcal{M}} \text{ iff } \exists \boldsymbol{U} \in \tau (\boldsymbol{x} \in \boldsymbol{U} \land \boldsymbol{U} \subseteq \llbracket \varphi \rrbracket^{\mathcal{M}})$

Downsides:

- it entails *the necessity of error*: there is at least one false belief in all worlds of every topological model.
- 2 it can easily be "Gettierized":

$$\mathbf{K}\varphi := \mathbf{B}\varphi \wedge \varphi$$

< ロ > < 同 > < 臣 > < 臣 >

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Our Focus

Given the interior-based topological semantics for knowledge:

<ロ> (四) (四) (日) (日) (日)

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Our Focus

Given the interior-based topological semantics for knowledge:

how can we construct a topological semantics for belief which can also address the problem of understanding the relation between knowledge and belief?

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Our Focus

Given the interior-based topological semantics for knowledge:

- how can we construct a topological semantics for belief which can also address the problem of understanding the relation between knowledge and belief?
- A how to extend this setting to static and dynamic belief revision?

Stalnaker's Logic KB

 $(\mathcal{L}_{\mathit{K}\!\mathit{B}}) \ \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathit{K}\varphi \mid \mathit{B}\varphi$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Stalnaker's Logic KB

$$(\mathcal{L}_{\mathit{K}\!\mathit{B}}) \ \varphi ::= \mathit{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathit{K}\varphi \mid \mathit{B}\varphi$$

Epistemic-Doxastic Axioms	
$\boxed{ K(\varphi \to \psi) \to (K\varphi \to K\psi) }$	Knowledge is additive
Karphi ightarrow arphi	Knowledge implies truth
Karphi ightarrow KKarphi	Positive introspection for K
$oldsymbol{B}arphi ightarrow eg B abla arphi ightarrow eg B abla arphi$	Consistency of belief
$egin{array}{c} egin{array}{c} eta & eb$	(Strong) positive introspection of <i>B</i>
eg B arphi ightarrow K eg B arphi	(Strong) negative introspection of B
$egin{array}{c} {\cal K}arphi ightarrow {\cal B}arphi \end{array}$	Knowledge implies Belief
Barphi o BKarphi	Full Belief
Inference Rules	
From φ and $\varphi \rightarrow \psi$ infer ψ .	Modus Ponens
From φ infer $K\varphi$.	Necessitation

イロン イロン イヨン イヨン

Stalnaker's Logic KB

$$(\mathcal{L}_{\mathit{K}\!\mathit{B}}) \ \varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathit{K}\varphi \mid \mathit{B}\varphi$$

Epistemic-Doxastic Axioms	
$\boxed{ K(\varphi \to \psi) \to (K\varphi \to K\psi) }$	Knowledge is additive
Karphi ightarrow arphi	Knowledge implies truth
Karphi ightarrow KKarphi	Positive introspection for K
$oldsymbol{B}arphi ightarrow eg B abla arphi ightarrow eg B abla arphi$	Consistency of belief
$egin{array}{c} egin{array}{c} eta & eb$	(Strong) positive introspection of <i>B</i>
eg B arphi ightarrow K eg B arphi	(Strong) negative introspection of B
$Karphi ightarrow oldsymbol{B}arphi$	Knowledge implies Belief
Barphi o BKarphi	Full Belief
Inference Rules	
From φ and $\varphi \rightarrow \psi$ infer ψ .	Modus Ponens
From φ infer $K\varphi$.	Necessitation

イロン イロン イヨン イヨン

Epistemic-Doxastic Axioms	
$K(\varphi ightarrow \psi) ightarrow (K \varphi ightarrow K \psi)$	Knowledge is additive
ig Karphi ightarrow arphi	Knowledge implies truth
Karphi ightarrow KKarphi	Positive introspection for K
$egin{array}{c} Barphi ightarrow eg B eg arphi ightarrow eg B eg arphi ightarrow eg B eg arphi ightarrow eg arphi ightarrow $	Consistency of belief
$oldsymbol{B}arphi ightarrow oldsymbol{K}oldsymbol{B}arphi ightarrow oldsymbol{K}oldsymbol{B}arphi$	(Strong) positive introspection of B
$\neg B\varphi \rightarrow K \neg B\varphi$ (Strong) negative introspection	
$Karphi ightarrow oldsymbol{B}arphi$	Knowledge implies Belief
Barphi ightarrow BKarphi	Full Belief
Inference Rules	
From φ and $\varphi \rightarrow \psi$ infer ψ .	Modus Ponens
From φ infer $K\varphi$.	Necessitation

Epistemic-Doxastic Axioms	
$K(\varphi ightarrow \psi) ightarrow (K arphi ightarrow K \psi)$	Knowledge is additive
ig Karphi ightarrow arphi	Knowledge implies truth
Karphi ightarrow KKarphi	Positive introspection for K
$egin{array}{c} Barphi ightarrow eg B eg arphi ightarrow eg B eg arphi ightarrow eg B eg arphi ightarrow eg arphi ightarrow $	Consistency of belief
$oldsymbol{B}arphi ightarrow oldsymbol{K}oldsymbol{B}arphi ightarrow oldsymbol{K}oldsymbol{B}arphi$	(Strong) positive introspection of B
$ eg B arphi ightarrow {m K} eg B arphi$	(Strong) negative introspection of B
$egin{array}{c} {\cal K}arphi ightarrow {\cal B}arphi \end{array}$	Knowledge implies Belief
Barphi ightarrow BKarphi	Full Belief
Inference Rules	
From φ and $\varphi \rightarrow \psi$ infer ψ .	Modus Ponens
From φ infer $K\varphi$.	Necessitation

 Belief as subjective certainty: an agent "fully" believes φ iff she believes that she knows it.

Stalnaker's logic entails:

Aybüke Özgün

イロン イロン イヨン イヨン

Topological Models for (Full) Belief and Belief Revision

Stalnaker's logic entails:

(Full) belief can be defined in terms of knowledge as

$$B\varphi \leftrightarrow \langle K \rangle K\varphi$$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Stalnaker's logic entails:

(Full) belief can be defined in terms of knowledge as

$$B\varphi \leftrightarrow \langle K \rangle K\varphi$$

2 KD45 as the logic of belief

Stalnaker's logic entails:

(Full) belief can be defined in terms of knowledge as

$$B\varphi \leftrightarrow \langle K \rangle K\varphi$$

- 2 KD45 as the logic of belief
- **3 S4.2** as the logic of knowledge

< 口 > < 同 > < 臣 > < 臣

Theorem (Folklore)

S4.2 is sound and complete wrt the class of extremally disconnected spaces (under the interior semantics).

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

・ロト ・四ト ・ヨト ・ヨト

Theorem (Folklore)

S4.2 is sound and complete wrt the class of extremally disconnected spaces (under the interior semantics).

A space (X, τ) is called extremally disconnected if the closure of each open subset of X is open.

Topological Semantics for Full Belief

Our Proposal: Topological semantics for full belief

Topological Models for (Full) Belief and Belief Revision

Topological Semantics for Full Belief

Our Proposal: Topological semantics for full belief

```
\mathsf{RECALL}: \vdash_{\mathsf{KB}} B\varphi \leftrightarrow \langle \mathsf{K} \rangle \mathsf{K} \varphi
```

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

イロン イボン イヨン イヨン

Topological Semantics for Full Belief

Our Proposal: Topological semantics for full belief

```
\mathsf{RECALL}: \vdash_{\mathsf{KB}} B\varphi \leftrightarrow \langle \mathsf{K} \rangle \mathsf{K} \varphi
```

Given an extremally disconnected space (X, τ) , we interpret belief as *the closure of the interior operator*:

 $\llbracket B\varphi \rrbracket = \operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket))$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

ヘロト ヘ戸ト ヘヨト ・ヨト

The Most General Extensional Semantics for KB

- An extensional semantics for \mathcal{L}_{KB} : (X, K, B)
 - $\mathrm{K}:\mathcal{P}(X)\to\mathcal{P}(X)$
 - B : $\mathcal{P}(X) \to \mathcal{P}(X)$

イロン イボン イヨン イヨン

The Most General Extensional Semantics for KB

- An extensional semantics for \mathcal{L}_{KB} : (X, K, B)
 - $\mathrm{K}:\mathcal{P}(X)\to\mathcal{P}(X)$
 - $\mathrm{B}:\mathcal{P}(X)\to\mathcal{P}(X)$
- An extensional model: (X, K, B, ν)

$$\llbracket \mathcal{K}\varphi \rrbracket^{\mathcal{M}} = \mathrm{K}\llbracket \varphi \rrbracket^{\mathcal{M}} \\ \llbracket \mathcal{B}\varphi \rrbracket^{\mathcal{M}} = \mathrm{B}\llbracket \varphi \rrbracket^{\mathcal{M}}$$

ヘロン 人間 とくほ とくほ とう

The Most General Extensional Semantics for KB

- An extensional semantics for \mathcal{L}_{KB} : (X, K, B)
 - $\mathrm{K}:\mathcal{P}(X)\to\mathcal{P}(X)$
 - $\mathrm{B}:\mathcal{P}(X)\to\mathcal{P}(X)$
- An extensional model: (X, K, B, ν)

$$\begin{bmatrix} K\varphi \end{bmatrix}^{\mathcal{M}} = K \llbracket \varphi \end{bmatrix}^{\mathcal{M}} \\ \begin{bmatrix} B\varphi \end{bmatrix}^{\mathcal{M}} = B \llbracket \varphi \end{bmatrix}^{\mathcal{M}} .$$

• A topological extensional semantics for \mathcal{L}_{KB} : $(X, K^{\tau}, B^{\tau}) := (X, Int, Cl(Int))$

ヘロト ヘ戸ト ヘヨト ・ヨト

Topological Semantics for Full Belief

The Most General Extensional Semantics for KB

Theorem (Topological Representation Theorem)

An extensional semantics (X, K, B) validates all the axioms and rules of Stalnaker's system **KB** iff it is a topological extensional semantics given by an extremally disconnected topology τ on X.

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Future Work

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

<ロ> (日) (日) (日) (日) (日)

Future Work

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

Axioms of S4.2
$$K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$$
 $K\varphi \rightarrow \varphi$ $K\varphi \rightarrow KK\varphi$ $\langle K \rangle K\varphi \rightarrow K \langle K \rangle \varphi$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

<ロ> (日) (日) (日) (日) (日)

Stalnaker's Logic KB

Our Work

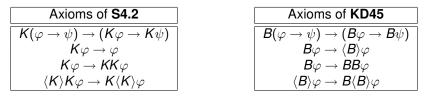
Future Work

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

Axioms of S4.2
$$K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$$
 $K\varphi \rightarrow \varphi$ $K\varphi \rightarrow KK\varphi$ $\langle K \rangle K\varphi \rightarrow K \langle K \rangle \varphi$

Axioms of KD45
$m{B}(arphi ightarrow \psi) ightarrow (m{B} arphi ightarrow m{B} \psi)$
$m{B}arphi ightarrow \langle m{B} angle arphi$
$m{B}arphi ightarrow m{B}m{B}arphi$
$\langle \pmb{B} angle arphi ightarrow \pmb{B} \langle \pmb{B} angle arphi$


イロト イポト イヨト イヨト

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Topological Semantics for Full Belief

Unimodal Cases: S4.2 and KD45

 Known: S4.2 is sound and complete wrt the class of extremally disconnected spaces.

ヘロト ヘアト ヘビト ヘビト

Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

$$(\mathcal{L}_{\mathcal{B}}) \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{B}\varphi$$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Topological Semantics for Full Belief

Unimodal Case: Completeness for KD45

$$(\mathcal{L}_{\mathcal{B}}) \varphi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathbf{B}\varphi$$

Theorem

KD45 is sound and complete wrt the class of extremally disconnected spaces.

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○○ ●○ ○○○○	Future Work
Static Belief Revision: Conditional Beliefs			

Conditional Beliefs

$(\mathcal{L}_{\mathsf{KCB}}) \ \varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{K}\varphi \mid \mathsf{B}\varphi \mid \mathsf{B}^{\psi}\varphi$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

・ロト ・四ト ・ヨト ・ヨト


Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○○ ●○ ○○○○	Future Work
Static Belief Revision: Conditional Beliefs			

Conditional Beliefs

$$(\mathcal{L}_{\mathsf{KCB}}) \ \varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{K}\varphi \mid \mathsf{B}\varphi \mid \mathsf{B}^{\psi}\varphi$$

 B^ψφ := If the agent would learn ψ she would come to believe that φ was the case before the learning.

・ 同 ト ・ ヨ ト ・ ヨ ト


For any topological model *M* = (*X*, τ, ν) based on an extremally disconnected space (*X*, τ),

 $\llbracket B\varphi \rrbracket^{\mathcal{M}} = \operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}})) = \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}}))).$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Aybüke Özgün

Topological Models for (Full) Belief and Belief Revision


For any topological model *M* = (*X*, τ, ν) based on an extremally disconnected space (*X*, τ),

$$\llbracket B\varphi \rrbracket^{\mathcal{M}} = \operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}})) = \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}}))).$$

• The Basic Topological Semantics for CB:

$$\llbracket B^{\varphi}\psi\rrbracket = \operatorname{Cl}(\llbracket \varphi\rrbracket^{\mathcal{M}} \cap \operatorname{Int}(\llbracket \varphi\rrbracket^{\mathcal{M}} \to \llbracket \psi\rrbracket^{\mathcal{M}})).$$

・ロト ・聞 ト ・ ヨト ・ ヨト

For any topological model *M* = (*X*, τ, ν) based on an extremally disconnected space (*X*, τ),

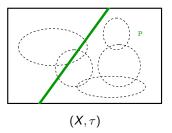
$$\llbracket B\varphi \rrbracket^{\mathcal{M}} = \operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}})) = \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}}))).$$

• The Basic Topological Semantics for CB:

$$\llbracket B^{\varphi} \psi \rrbracket = \operatorname{Cl}(\llbracket \varphi \rrbracket^{\mathcal{M}} \cap \operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}} \to \llbracket \psi \rrbracket^{\mathcal{M}})).$$

• The Refined Topological Semantics for CB:

$$\llbracket \boldsymbol{B}^{\varphi} \boldsymbol{\psi} \rrbracket = \operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}} \to \operatorname{Cl}(\llbracket \varphi \rrbracket^{\mathcal{M}} \cap \operatorname{Int}(\llbracket \varphi \rrbracket^{\mathcal{M}} \to \llbracket \boldsymbol{\psi} \rrbracket^{\mathcal{M}}))).$$

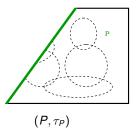

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work
Dynamic Belief Revision: Updates			

Updates

Given a topological space (X, τ) and a set $P \subseteq X$, a space (P, τ_P) is called a subspace of (X, τ) where $\tau_P = \{U \cap P : U \in \tau\}.$

Updates

Given a topological space (X, τ) and a set $P \subseteq X$, a space (P, τ_P) is called a subspace of (X, τ) where $\tau_P = \{U \cap P : U \in \tau\}.$



イロン イボン イヨン

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○○ ○●○○	Future Work
Dynamic Belief Revision: Updates			

Updates

Given a topological space (X, τ) and a set $P \subseteq X$, a space (P, τ_P) is called a subspace of (X, τ) where $\tau_P = \{U \cap P : U \in \tau\}.$

Stalnaker's Logic KB

Our Work

Future Work

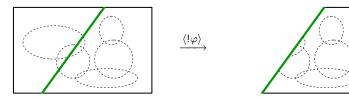
Dynamic Belief Revision: Updates

 $\varphi := \boldsymbol{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \boldsymbol{K} \varphi \mid \boldsymbol{B} \varphi \mid \boldsymbol{B}^{\psi} \mid \langle ! \varphi \rangle \varphi$

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

Some History and Motivation	Stalnaker's Logic KB	Our Work ○○○○○ ○○ ○○●○	Future Work
Dynamic Belief Bevision: Undates			


$$\varphi := \boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \varphi \mid \boldsymbol{K} \varphi \mid \boldsymbol{B} \varphi \mid \boldsymbol{B}^{\psi} \mid \langle ! \varphi \rangle \varphi$$

⟨!φ⟩ψ := φ is true and after the agent learns φ, ψ becomes true.

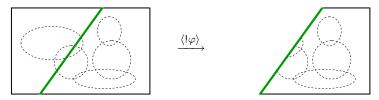
$$\varphi := p \mid \neg \varphi \mid \varphi \land \varphi \mid K\varphi \mid B\varphi \mid B^{\psi} \mid \langle !\varphi \rangle \varphi$$

⟨!φ⟩ψ := φ is true and after the agent learns φ, ψ becomes true.

$$\mathcal{M} = (X, \tau, \nu) \qquad \qquad \mathcal{M}_{\varphi} = (\llbracket \varphi \rrbracket, \tau_{\llbracket \varphi \rrbracket}, \nu_{\llbracket \varphi \rrbracket})$$

• $\llbracket \varphi \rrbracket = \llbracket \varphi \rrbracket^{\mathcal{M}}$

•
$$\tau_{\llbracket \varphi \rrbracket} = \{ U \cap \llbracket \varphi \rrbracket : U \in \tau \}$$


• $\nu_{\llbracket \varphi \rrbracket}(p) = \nu(p) \cap \llbracket \varphi \rrbracket$ for any $p \in \operatorname{Prop}$

ヘロト 人間 とくほとく ほとう

$$\varphi := \boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \varphi \mid \boldsymbol{K} \varphi \mid \boldsymbol{B} \varphi \mid \boldsymbol{B}^{\psi} \mid \langle ! \varphi \rangle \varphi$$

⟨!φ⟩ψ := φ is true and after the agent learns φ, ψ becomes true.

$$\mathcal{M} = (X, \tau, \nu) \qquad \qquad \mathcal{M}_{\varphi} = (\llbracket \varphi \rrbracket, \tau_{\llbracket \varphi \rrbracket}, \nu_{\llbracket \varphi \rrbracket})$$

Given a topological model *M* = (*X*, *τ*, *ν*), the additional semantic clause reads

$$x \in \llbracket \langle ! \varphi \rangle \psi \rrbracket^{\mathcal{M}}$$
 iff $x \in \llbracket \varphi \rrbracket$ and $x \in \llbracket \psi \rrbracket^{\mathcal{M}_{\varphi}}$

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Future Work

- Multi-agent case
- Action models
- Dynamic attitudes
- Relation with topo-logic and effort modality

▶ < 코 ▶ < 표

Some History and Motivation	Stalnaker's Logic KB	Our Work 00000 00 0000	Future Work

Thank you!

Topological Models for (Full) Belief and Belief Revision

Aybüke Özgün

(4日) (日) (日) (日) (日)